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I. The construction of governing equations for isotropic media with dissimilar prop- 
erties in tension and compression involves determination of the relationship between the 
components of the tensors hij and oij characterizing the kinematic and force factors. The 
most general relation between these tensors was obtained in [I]. The governing equations 
proposed in [2-9] can be considered different forms of the relations obtained by V. V. Novo- 
zhilov. 

We will examine the construction of physical equations containing the first 11 = oijbij 

and second 12 = (oijoij - I~)/2 invariants of the tensor oij (dij is the Kronecker symbol). 
To do this, we assume the existence of the potential 

, w  = 

w h e r e  ~ 0 ;  

(A, B, and C are constants). 
law hij = X3W/5oij, where X is a scalar multiplier. 
relation 

(1.1) 

= ~  + o o, g =  BI~, o ~ =  AI~ + 4CI 2 ( 1 . 2 )  

Then the components of the tensor hij are determined by the 
Then using Eqs. (I.i) and (1.2) and the 

OW/Oo = OW/Oa o = ~ ,  0o/0~i~ = BSu,. " 

OO'o/OO'ij - [(A - -  2C)I16i1 ~- 2C~ii]/zo, 

we have 

. ]', �9 ~,,~"e (A - -  20) 118{j -~ 20~ O 
hu + BSu 

( 7  0 " 
(.i.3) 

To find the multiplier I, we form the mixed invariant L = oijhij and from (1.3) we obtain 
L =Io$. 

We then arrive at the linear-tensor relations 

L [(A--2C) fl~ij+2Ca~j ] 
hu  = ~ % + B6ij ~ (I. 4) 

determining the behavior of materials with different strength in tension and compression. 

2. Let us examine elastic deformation. In this case, hij ~ eij and oij in (1.4) are 
components of the tensors of the elastic strains and stresses, respectively; I = i, so that 
L = o~. Physical equations (1.4) contain three types of constants: A ~ A ~ B m B ~ C ~ C ~ 
which can be found, for example, on the basis of standard uniaxial tests in tension (+) and 
compression (-) with determination of the elastic moduli E+ and E_and the Poisson's ratio 
~+: 

A ~ = [(E+) -I/2 + (E_) -I/2F/4, (2. i) 

B 0 - -  [ ( E ~  -1~ - - ( E _ ) - ' / 2 l ! 2 ,  C O= (A ~ -~ B ~  A~ § v+)12. 

The equality E+ = E_ is valid for materials with the same properties in tension and 
compression. Then in Eq. (2.1) B ~ = 0, while in (1.2) a = 0. Here, governing equations 
(1.4) reduce to Hooke's law 

e i j =  (A ~ - -  2C~ ~ 2C~ ( 2 . 2 )  
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3. We will obtain the relation between the components of the tensors of the rates of 
plastic strain Pij and the stresses aij in an elastoplastic body. The dot above the symbol 
denotes a derivative with respect to the loading parameter t. We will use Eqs. (1.4), where 
hij - Pij; A - A 0, B -= B 0, C - C o are scalar parameters; L is the specific density of the 
energy dissipated during plastic deformation; a e is the equivalent stress. 

As the strain-hardening measure we take q = [Ldt. We write the plastic strain condition 
o% 

in the form 

% : cp(q). (3.1) 

Elastic deformation occurs at ~e = q0(q), so that L = 0. If condition (3.1) is satisfied 
and additionally o e > 0, then loading takes place and L > 0. If Eq. (3.1) is valid and the 
relation o e < 0 is satisfied, then L = 0, and either unloading or neutral loading takes place. 

We now examine the case of simple loading when the components of the stress tensor in- 
crease in proportion to the parameter t ~ [0, I]: ~ii = t~*}. The asterisk denotes values at the 
end of loading. Performing the operation of integration, we change Eqs. (1.4) to the form 

Pij = (A~ -- C~ llS'ij, + 2C~ + BoSi dr. 

(~0 0 
1 

Using the definition of the strain-hardening measure, we obtain q* =J,~dt and then, on the 
e 

0 

basis of (3.1), we obtain q~ = V(ae). We finally arrive at the following physical relations 
(with the asterisk omitted) for the strain variant of the theory: 

p~j= y((;,)[ (Ao-2c~176 + B06~j ]. (3.2) 

The function v(o e) can be determined either from a tabulation or by analytical means. The 
simplest methods of assigning this function areas a power relation o e,n a hyperbolic sine law 
sinh(oe/a), and an exponential relation exp(oe/b) (n, a, and b are material constants). Al- 
though the natural condition v(0) = 0 is not satisfied for the last representation, this func- 
tion is often used to approximate stress-strain curves. 

Let us discuss the method of determining the constants in derived equations (3.2) on the 
basis of data from standard tests. Let the following relation hold for the uniaxial tension 

of specimens 

Pn = D~i~. (3.3) 

We also assume that tests were conducted in torsion with the shear stresses oi2 and that we 
experimentally found the relationship between the principal stresss oii= oi2 and o33 = -x~i2 
(022 = 0) and the corresponding principal strains, i.e., the strains in the principal direc- 
tions 

Pll = T-i-o'~tl, P33 = -- T_ I ~ 1  =. ( 3 . 4 )  

Then, knowing the  m a t e r i a l  c o n s t a n t s  D, T+, T_, and n and comparing Eqs. (3 .3 )  and (3 .4 )  w i th  
t he  analogous r e l a t i o n s  which fo l low from ( 3 . 2 ) ,  we de te rmine  the  f o l l o w i n g  t h r e e  s c a l a r  
parameters  i f  we put  v(o e) = on: 

n i $ 

Co = § = 
n + l  

For materials for which T+ = T_ = 3 2 D121 we find from (3.5) that B 0 = 0, 4C 0 = 3A 0. 
Then it follows from (1.2) that o = 0, and the equivalent stress coincides to within the con- 
stant with the stress intensity o i, i.e., o e = f~0oi . In this case, physical relations (3.2) 
take the form 

familiar from the classical theory of plasticity. 
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To verify governing equations (3.2), we will compare the theoretical results with ex- 
perimental results for a complex stress state. We will therefore examine the elastoplastic 
deformation of gray iron of a composition close to the grade SCh 15-32 [6]. The tests were 
conducted in uniaxial tension and pure torsion (with measurement of the principal strains 
eii, e~ of the specimens of this material). The tests established that the elastoplastic 
properties were isotropic, the elastic strains are independent of the type of loading, and 
the material has different resistances to plastic deformation. Figure 1 shows stress-strain 
curves of the gray iron: 1 is for uniaxial tension and 2 and 3 are for torsion (3 corresponds 
to the direction of the maximum principal stress oii, 2 corresponds to the direction of the 
minimum principal stress [o~s]). Analysis of the stress-strain curves leads to the following 
relations: for uniaxial tension 

for torsion 
gii ---- eli Jr Pii, en ---- M(Yii,. Pn = Diiff~i, 

n 
811 = e l i  + P n ,  e l l  = Qff l l ,  P n  = T + f f i i ,  

, ~a3 : e83 + Pa3 ,  ea3 = -QI~I, P33 : - - T - ] ~ 3 3 1  n.  

The values of the material constants: n = 4.5, M = i0 -~ mm2/kg, Q = 1.40.10 -4 , D = 1.32-i0 -s 
(mm2/kg) n, T+ = 4.06"10 -8 , T_ = 1.59.10 -~. We then use these values to find the parameters 
of Hooke's law (2.2) and physical equations (3.2), and for any stress state we calculate the 
strains eij = eij + Pij. 

Let us discuss the results of tests of thin-walled tubular specimens of the same mate- 
rial loaded by' internal pressure and an axial force [6]. Solid lines i and 2 in Fig. 2 show 
the experimental relations ell - oll and e22 - o22 with the ratio ali/022 = 2.3. For com- 
parison, the dashed lines show the analogous theoretical results. It can be seen from Fig. 2 
that the agreement between the theoretical and experimental results can be considered satis- 
factory. 

4. We will obtain the governing equations for the creep Of strain-hardening materials 
having different strengths in tension and compression. To do this, we use Eqs. (1.4), as- 
suming that hij m Zij and that oij are components of the tensors of the rates of creep strain 
and the stresses, respectively; A ~ A*, B ~ B*, C ~ C* are constants; L is the specific den- 
sity of the energy dissipated during creep; o e is the equivalent stress. The dot above the 
symbol denotes differentiation with respect to the time t. To describe the strain-hardening 
of materials, we introduce the parameter q, characterized by the kinetic equation, 

dq/dt = R. ( 4 . 1 )  

The right side of (4.1) can be defined in several ways. For example, we can take R = I, R = 
L, or R = L/o e. 

We assume that the energy density is a function of the equivalent stress and the struc- 
tural parameter q 

L = r  q).  

We take L = OeV(Ce)X(q). Then physical equations (1.4) are written as follows 

7"i3 v(a.)~(q)[  (A*-2C*)'*8~j+2C*~j ] 
= ~o + B*Sij �9 (4.2) 

The function v(o e) can be taken in one of the following forms: a power relation o~, a hyper- 
bolic sine law sinh (Oe/a) with known stipulations, or an exponential relation exp (oe/b). 
The representations qm or exp (q/c) are possible for the functionx(q). Here, n, a, b, m, and 
c are constants. The correct selection of the functions v(o e) and x(q) is related to ques- 
tions regarding the best approximation of the creep curves and is done on the basis of data 
from the standard tests. For non-strain-hardening materials, we should take X = i. In this 
case, governing equations (4.2) become the relations which were proposed and verified experi- 
mentally in [9]. 

Let us examine the method of determining the parameters which enter into derived equa- 
tions (4.2). To do this, we will use a series of independent standard tests involving the 
tension, compression, and torsion of specimens of the investigated strain-hardening material 
under creep conditions with constant stresses. Let the relationship between the strain rate 
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and the stress o, be established.from analysis of the creep curves, i.e., for example, Z = 
K+mtm-lc~ in uniaxial tension and Z = -K_mtm-11o,! n (K_ > 0) in uniaxial compression. We 
assume that a similar relation holds between the rate of shear creep ~ and the shear stress 

in torsion: # = Kmtm-z~ n ,. Here, K+, K_, K, m, n are material constants. 

Then we can take v(o e) = o~ and x(q) = mq m-1 in physical relations (4.2) and R = i in 
(4.1), i.e., q = t. Then writing Eqs. (4.2) for each of the three above-examined cases of a 
unidimensional stress state and comparing them with the analogous relations presented earlier, 
we find the constants 

A* = + ( 4 . 3 )  

8 .  = [ K u  ( " + ' ' -  c *  = 

n + l  

I f  we e s t a b l i s h  from the  s t andard  t e s t s  t h a t  K +  = K _ , K =  3-Y-K+, then  from (4 .3)  we 
find 

A* = K~ (n+O, B* =0~ C* = 3K~(~+1)/4~ 

In this case, o = 0, o 0 = ~A*oi, o i is the stress intensity. Then governing equations (4.2) 
become the well-known equations 

" 3 ( y r " ~ , n + ~ . n - ~ - ~ (  " i ) 

describing the creep of materials with the same resistance to deformation under different 
types of loading. 

For example, analysis of data from creep tests of aluminum alloy VT-9 at 400~ [7] in 
tension, compression, and torsion leads to the values n = 5.91, m = 0.265, K+ = 1.45"10 -I~ 
(kg/mm2) nh-m, K_ = 5.10"i0 -is, K = 3.20"10 -I~. It is evident that this strain-hardening 
material manifests a substantial difference in strength in tension and compression. 

We can then use Eqs. (4.3) to find the parameters A*, B*, and C* and use Eqs. (4.2) to 
describe the creep of this titanium alloy in a complex stress state. To do this, we compare 
the theoretical results with data from the experiments in [7] conducted on thin-walled tubes 
loaded by torsion and an axial (tensile or compressive) force. Figure 3 shows the change in 
specific work A I = oziZzl + 2o12Zz2 with time. The test data is denoted by circles. The 
clear circles pertain to tension with torsion (o11 = 56 kg/mm 2, o12 = 26.5), while the dark 
circles correspond to compression with torsion (ozl = -56, oz2 = 26.5). Lines 1 and 2 are 
the analogous theoretical results. Considering the appreciable difference in the strengths 
of the material and the natural scatter of creep data, the agreement between the theoretical 
and experimental results can be adjudged satisfactory. 

Thus, the proposed physical relations can be used to describe the elasticity, plastic- 
ity, and creep of isotropic materials with different strengths in tension and compression. 

. 
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PROBLEM OF THE SYNTHESIS OF A COMPOSITE MATERIAL OF UNIDIMENSIONAL 

STRUCTURE WITH ASSIGNED CHARACTERISTICS 

A. G. Kolpakov and S. I. Rakin UDC 539.3 

A significant amount of attention is now being given to the development of composite 
materials with assigned properties. Here we present a solution of this problem in regard 
to the thermophysical and stiffness characteristics of composites with a unidimensional struc- 
ture (with the condition that the components have the same Poisson's ratios). 

By a composite material with a unidimensional structure we mean an inhomogeneous mate- 
rial with thermophysical and mechanical characteristics which are a function of a single space 
variable, such as x I. Composites constitute a special case of such materials. The character- 
istics of a composite composed of a large number of small components are rapidly oscillating 
functions with a characteristic magnitude of oscillation e ~ i (in the case of laminated com- 
posites, e is the characteristic thickness of the layers). As was shown in [1-5], at e + 0 
an inhomogeneous composite with a periodic structure can be regarded as a homogeneous material 
with so-called averaged [1-5] thermophysical and mechanical characteristics which at e ~ i 
are close to the thermomechanical behavior of the original material [1-6]. The averaged 
characteristics, describing the material from the macroscopic viewpoint, are determined by its 
its local (microscopic) characteristics. The question of determining averaged characteris- 
tics of composites from their local characteristics has been fully resolved by now [1-7]. Here 
we examine the inverse problem: through which averaged characteristics and in what manner can 
we impart a unidimensional structure to composites by controlling their local characteristics? 
The solution is obtained on the basis of the methods used in [8, 9] in regard to thermophysi- 
cal and stiffness characteristics. 

Let the composite material we are studying be locally isotropic and inhomogeneous, with 
a periodic structure. The characteristic size of the period ~ ~ i. We apply the following 
restriction to the types of composites for which our findings are valid: the materials used 
in the composite must have the same (or similar) Poisson's ratios. This condition is met, 
for example, by a composite based on metals (~ z 1/3) or polymers (~ z 0.4). The material 
characteristics of the composites being examined: c(xl/g) , a(xl/e ) are the local heat capac- 
ity and thermal conductivity; E(xl/e), A(xi/e) are the local Young's modulus and coefficient 
of linear expansion [the period of the functions c(t), a(t) E(t), A(t) is equal to unity]. At 
e § the solutions of the heat-conductionand strain problems for the composite approach [in 
the norm of the space L2(Q)] the solutions of the same problem for a homogeneous anisotropic 
material with averaged characteristics: 

heat capacity [2, 7] 

= <c>, ( 1 )  
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